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Abstract
In the field of artificial intelligence, pattern recognition is widely used to extract
the abstract information in those high dimensional inputs of image, voice, or video.
However, the interpretability of pattern recognition still remains understudied. The
incomplete features extracted from system input still limit the recognition perfor-
mance. To reject the disturbance of feature incompleteness, an error compensation
is realized into the pattern recognition model under a quantum computation frame-
work. The quantum-based recognition system fulfills the information transmission
from input to output with the transformation of quantum states. Then, a compensa-
tion for the quantum state is used to reject those intermediate errors in the pattern
recognition task. The experiment results in this paper indicate an effectiveness of the
proposed method, with which the compensated Quantum Neural Network obtains a
better performance. The proposed method brings a more robust recognition system
under unknown disturbances.
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1 Introduction

Pattern recognition has been widely used in human daily life. A large amount of aca-
demic and industrial researches are taken in the field [1–3]. Under the development
of quantum computation, the technologies in pattern recognition, which are previ-
ously modeled in a classic computing architecture, are successfully realized toward
the quantum state [4–8]. Besides, the open source platform Tensorflow develops the
dedicated quantum packages for the coding community [9]. The major operations of
a quantum-based pattern recognition model are shown in Fig. 1, including data pre-
processing, quantum encoding, feature extraction, and classification. In this paper, a
realization of disturbance rejection is taken toward this model.

The major disturbance rejections for pattern recognition in the current researches
are taken by amore robust data preprocessing [10], a deeper feature extraction [11], etc.
One of themain challenges in the current researches is the constraint of interpretability,
which leads to an unavoidablemodeling error [12]. Furthermore, it brings the complete
feature set unavailable [13]. Under the incompleteness constraint and the unavoidable
interferences in practical application, the output of open loop recognition system is
always different from the desired one, resulting in a recognition error. Little research
has been done onwhat kinds of error the system produces aswell as how to compensate
for these errors.

Some of the solutions on this challenge are taken by the large-scale datasets [14–
16]. If the training dataset is large enough, then the disturbances in all application
scenarios are included in the training stages, so that the recognition system is robust
enough to achieve an excellent performance [11]. However, it is almost impossible
to ergodic all kinds of disturbance in a limited training dataset. The sample space is
usually an infinity space. Although the sample space for a recognition task should
be smaller than the whole universe in a physic view, it still be a heavy computation
workload for the machine intelligence. In some current works, the recognition systems
need to be simplified to constraint the computation cost [17]. Besides, the classical
pattern recognition needs a series of nonlinear operation to fulfill the feature extraction

Fig. 1 A framework of the quantum-based pattern recognition model
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process, which brings more difficulties on disturbance rejection. In contrast, under
the quantum computation framework, these nonlinear operations are simplified into
a linear unitary transformation. As a result, the forward recognition as well as the
backward propagation become a more concise form.

In quantum computation, all messages are represented by the quantum state. An
adequate quantum state space should completely represent the information transmis-
sion from input to output. Therefore, the disturbance rejection work in this paper is
taken on the quantum state space, with which the information transmission is realized
by Feature [6]. The robust feature is a key element in pattern recognition. To com-
pensate for those passive and unavoidable intermediate error from an active point of
view, the disturbance rejection control is applied on features in Hu et al. [18], in which
a compensation method is used. The core principle of disturbance rejection control
is a model-free error compensation under the internal and external disturbance, so
as to stabilize a controllable system [19–21]. In this paper, the compensation princi-
ple is further applied into a feature extraction process for the quantum-based pattern
recognition task.

Section 2 summarizes the related aspects about quantum-based pattern recognition.
Then, Sect. 3 illustrates a disturbance rejection based on feature compensation in the
quantum-based pattern recognition model. Furthermore, the error convergence is ana-
lyzed in a Markov sense by Sect. 4. The experiments are given in Sect. 5, followed by
conclusions in Sect. 6.

2 Related works

2.1 Disturbance rejection in pattern recognition

The core principle for disturbance rejection in pattern recognition is a group of not only
content descriptive but also semantic representative features [18, 22, 23]. Without loss
of generality, a m-steps feature extraction for the Input Xin is taken by the following
hierarchy process, i.e., ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ŷ1 = F1(X
in)

Ŷ2 = F2(Ŷ1)

· · ·
Ŷm = Fm(Ŷm−1)

, (1)

in which Operation Fi (·), i = 1 ∼ m, can be realized by a linear full connected layer,
a nonlinear convolution layer, a non-trainable pooling layer, and so forth [11].

For the ideal features of an objective Class A, expressed as: A∗ =
(Y ∗

1,A ,Y ∗
2,A , ...,Y ∗

m,A), and its disturbed sample, expressed as: Â =
(Ŷ1,A , Ŷ2,A , ..., Ŷm,A), a stability condition is given by Lemma 1.

Lemma 1 To guarantee a correct recognition, an error convergence needs to be
satisfied for distance ‖ Â − A∗‖, i.e.,

‖ Â − A∗‖ ≤ ε , (2)

in which the stability margin is limited by ε.
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More demonstration and application about Lemma 1 can be found in Jordan and
Mitchell [24]. Furthermore, for the Class B (B�=A)—which is expressed as: B∗ =
(Y ∗

1,B ,Y ∗
2,B , ...,Y ∗

m,B), a mis-recognition occurs when the following condition is
satisfied:

‖ Â − A∗‖ ≥ ‖ Â − B∗‖ . (3)

The main disturbance rejection works are taken by: (1) The more complicated and
robust recognition model, such as CNN [25], FPN [26], and Transformer [27]; (2)
the more descriptive modeling of recognition method, such as Gabor [28], SIFT [29],
and MFCC [30]; and (3) the larger scale datasets which try to cover every application
scenario, such as MNIST [14], VOC [15], and COCO [16].

2.2 Pattern recognition with quantum

In a quantum-based pattern recognition task, the Input Xin is encoded by a quantum
state |φin〉 [8]. Then, it can be extended into a matrix form with Xin = |φin〉〈φin|.
In this paper, the quantum realization of feature extraction, i.e., Fi (Ŷi−1) in Eq. (1),
is taken by a series of unitary transformation referring to the Deep Quantum Neural
Network proposed by Beer et al. [6]. Hence,

Fi (Ŷi−1) = tri−1

(

Ui (
Ŷi−1 ⊗ |0 · · · 0〉i 〈0 · · · 0|) Ui †

)

, (4)

in which i corresponds to the layer index. All these transformation are trained with the
loss function based on a specific training dataset, e.g., (|φin

n 〉, |φout
n 〉), n = 1, 2, ..., N .

The loss function for the whole pattern recognition model is defined by fidelity, i.e.,

L = 1

N

N∑

n=1

〈φout
n |Ŷm,n|φout

n 〉 . (5)

in which the sample amount is N . Due to the constraint on computation resource, the
current methods usually focus on a restricted case, e.g., |φout〉 = V |φin〉 [31]. The uni-
tary operation V corresponds to the linear regression in classical pattern recognition.
With respect to the complex task in the current booming artificial intelligence field,
many large-scale datasets have not yet been transferred into the quantum physic [8].

2.3 Disturbance rejection in qubit

The error convergence between ŶA and Y ∗
A for quantum-based recognition task is

given by a fidelity limit of ‖1 − F(ŶA,Y ∗
A)‖ ≤ ε, in which F(·, ·) represents a

fidelity calculation [4]. In this paper, a N -dimensional quantum qubit system is used
to construct the feature space for ŶA and Y ∗

A. DimensionN corresponds to the amount
of objective classes in a recognition task. Then, the disturbance acting on a recognition
process and the respective disturbance rejection are realized in a qubit sense. Some
specified quantum states, just like the EPR states [32], can be designed manually to
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Fig. 2 Feature error in qubit

represent the ideal situation. In contrast, once an ideal qubit |φ〉 = a|0〉 + b|1〉 is
disturbed, it becomes |φ′〉 = Ud · |φ〉 = a′|0〉 + b′|1〉, shown in Fig. 2. Under the
basic assumption for quantummechanics and quantum information [33], the disturbed
quantum state, which stores the information embedded in the system input, should be
compensated to return back to its correct location in the feature space. As a result, the
correct quantum state can be used to fulfill the recognition task successfully [5, 7, 8].
This disturbance rejection principle is realized in details by the following Sect. 3

3 Disturbance rejection in quantum-based recognition system

When the quantum-based recognition system is disturbed, the qubit, which stores
the intermediate feature, will deviate from its original error-free state. Therefore, the
disturbance rejection is taken by a compensation on the quantum state in this paper.
The compensation principle is shown by Fig. 3.

3.1 Quantum representation of a recognition task

Firstly, this paper modifies a quantum-based recognition task based on the classical
one-hot label [24]. In a classification toward N kinds of objective classes, the ideal

Fig. 3 A quantum-based pattern recognition model with compensation
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Bayes probability estimation for the Class A, A = 1, · · · ,N , should be a PA = 0 or
PA = 1. Therefore, the ideal label in this paper is defined by |φout

A,∗〉 = 0 · |0〉 + 1 · |1〉,
i.e., a2 = 0, b2 = 1 for a single qubit a|0〉 + b|1〉. Otherwise, the negative label is
|φout

A,∗〉 = 1 · |0〉 + 0 · |1〉. A constraint needs to be satisfied with a2 ≥ 0, b2 ≥ 0, so
that the classification task is meaningful in probability sense. Then, the Ath dimension
of any Sample Xin is given by |φA〉 = a|0〉 + b|1〉. For example, in the MNIST
recognition task, N = 10, so that the quantum states for an input is prepared with
Xin = |φ1 φ2 ... φ10〉. Hence, a transformation between the classical one-hot and the
quantum one-hot is realized as follows:

(

N−1
︷ ︸︸ ︷
0, ..., 0, 1) ⇔

N−1
︷ ︸︸ ︷
|0〉, ..., |0〉, |1〉 . (6)

Besides, the solid label can be replaced by a soft one, e.g., a2 = 1, b2 = 0 ⇒
a2 = 0.99, b2 = 0.01. The simple deduction is omitted. The last but not least, the
final recognition result in Eq. (1) is given by the maximum likelihood based on a
Bayes probability estimation of PA = 〈φ∗

A|Ŷm |φ∗
A〉. With the quantum one-hot label,

a Quantum Neural Network can be used to fulfill an objective recognition task, which
will be tested in Sect. 5.2.

3.2 Modeling of error system

Disturbance always exists in a working system, so comes the error [34]. Once different
kinds of internal and external disturbances act on the recognition system, errors will
be generated in all intermediate operations in Eq. (1) [18]. Therefore, the error system
is built by a hierarchy fidelity computation as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1 =Fe
1 (X

in, |φin∗〉)
e2 =Fe

2 (Ŷ1, |φ∗
1 〉)

· · ·
em =Fe

m(Ŷm, |φ∗
m〉)

. (7)

The intermediate errors are obtained with a fidelity calculation between the features
extracted by a specific input and the corresponding Cluster Centers |φ∗

i,A〉, (A =
1, · · · ,N ), i.e., Fe

i = 〈φ∗
i,A|Ŷi |φ∗

i,A〉. The Cluster Center can be designed manually,
or with a Center Loss optimization [35].

3.3 Disturbance compensation on feature

The extracted feature Ŷi , whose message is stored in a qubit |φi 〉, is disturbed from
its error-free state, i.e., a bias from |φ∗

i 〉. Therefore, under the Postulate 2 in quantum
mechanics, it always can be compensated from |φ∗

i 〉 = Ue|φi 〉 [33].
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Remark 1 The closeness of the quantum-based recognition system is left for future
study. Whether it is close or not does not affect the effectiveness of the unitary com-
pensation. The Postulate 1 in quantum mechanics ensures the existence of the ideal
quantum state in the feature space. What an effective compensation needs to do is the
stabilization of the whole system under unknown disturbances [36].

Therefore, the compensation on feature, proposed in [18] is taken toward the inter-
mediate errors in Eq.(7). Then, the compensated feature is used to fulfill the objective
recognition task. In this paper, the compensated feature extraction is given as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ỹ1 = �F1(F1(X
in))

Ỹ2 = �F2(F2(Ỹ1))

...

Ỹm = �Fm(Fm(Ỹm−1))

, (8)

in which the compensation operator �Fi (·) should realize an error convergence
between Ỹm and Y ∗

m with Lemma 1. For the ideal qubit |φ∗
i 〉, who stores the infor-

mation of ideal feature Y ∗
m , it is estimated by a compensation unitary Ue, i.e., |φ∗

i 〉 ≈
Ue|φi 〉. Therefore, the intermediate feature, which is expanded by Ŷi = |φi 〉〈φi |, is
compensated by:

Ỹi =Ue|φi 〉〈φi |U †
e = UeŶiU

†
e . (9)

Ideally, the compensation unitary can be easily derived into U∗
e = |φ∗

i 〉〈φi |. How-
ever, the selection of |φ∗

i 〉 is taken by the open loop recognition result. It may be
mis-recognized as another class. Therefore, the approximation of Ue needs a more
systematic analysis.

4 Error convergence in quantum-based pattern recognition

4.1 Markovmodel of pattern recognition

In this paper, the Markov characteristic of a pattern recognition process is defined by
the tuple of < �,E,Pr{·} >. The Feature Space is marked with �. The Class Set E
includes Class A, Class B, etc. The definition of � and E correspond to the Sample
Space and Event Space in a general Markov Chain [37]. Besides, the probability map
is marked with Pr{·} ∈ [0, 1]. The conditional probability Pr{Ym = A|Ym−1 =
A,Ym−2 = B, ...,Y1 = C, Xin = A} = Pr{Ym = A|Ym−1 = A} introduces a
Markov Chain between all objective state in a pattern recognition task. The symbol =
means belong to in these formulas. Besides, the Markov characteristic has nothing to
do with whether B = A and C = A or not. In a practical scenario, if B or C is equal
to A, the following step of feature extraction will become redundant. The depth of m
just need to guarantee that all potential input can be separated, so that Ym = A [11]. A
smaller m can lighten the whole recognition system [38]. The Assumption 1 models
the recognition system in Eq.(1) into a Countable-state Markov Chain, i.e.,
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Fig. 4 The separation of
different states

Assumption 1 The feature space in Eq. (1), i,e, Yi (i = 1, · · · ,m), is griddled by N
kinds of objective classes. Besides, the extracted features for Input Xin in Yi and Yi+1,
i.e., Ŷi and Ŷi+1, satisfy: (1) Ŷi and Ŷi+1 belong to the corresponding regions with
respect to the Class setE, e.g., Ŷi ∈ Class A and Ŷi+1 ∈ Class B; and (2) the belonging
for Ŷi and Ŷi+1 are independent with each other, e.g., Xin ∈ Class C, A �= B �= C .

The Markov Chain is originally used to model a set of separated states [37]. Then,
it is developed into the hierarchy feature extraction process in this paper, no matter
for the quantum-based pattern recognition or the classical one. Then, the definitions
of Recurrent, Transient, Period, and Aperiodic for a Markov Chain are transferred
toward the pattern recognition task.

Definition 1 Recurrent: A State A is Recurrent if for each State B, shown in Fig. 4,
there exist m < ∞ such that Pr{Ym = A|Xin = A > 0}. Transient: If it is not
Recurrent. Period: The greatest common divisor of m such that Pm

AA = Pr{Ym =
A|Xin = A} > 0. Aperiodic: If the Period is 1. Ergodic: In a finite-state Markov
Chain, if a state is both Recurrent and Aperiodic, it is defined as Ergodic.

Lemma 2 Either all states in a class are Transient, or all are Recurrent for Countable-
state Markov Chain.

More demonstration and application about Definition 1 and Lemma 2 can be found
in Jordan and Mitchell [39]. When the error in a recognition process is convergent,
Theorem 1 will be satisfied based on Lemma 2, e.g., with Xin ∈ Class A, then Ŷm ∈
Class A, a correct recognition result is obtained.

Theorem 1 All of the states in theMarkov Chain of a stable recognition are Recurrent.

Theorem 1 is proposed based on a consistent of the input sample and its recognition
result. The system is stable iif Recurrent for any state in the objective recognition task.
Otherwise, some states would not be returned when disturbance exists. Furthermore,
two adjacent steps of feature extraction may obtain the same belonging for Ŷi and
Ŷi+1. So, Theorem 2 can be easily obtained in a common sense.

Theorem 2 All of the states in the Markov Chain of a recognition task, no matter it is
stable or not, are Aperiodic.

With Theorems 1 and 2, the characteristic of Ergodicity in Definition 1 will guar-
antee a stability of the recognition system. To further analyze the convergence of a
pattern recognition Markov Chain, the Drift Operator in a quantum sense is defined
in this paper.
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Definition 2 Consider a Countable-state Chain with Feature Space � and Transition
Unitary UA,B, the Quantum Drift Operator � is defined for any nonnegative function
V: � → ∞, i.e., ∀|φA〉 ∈ �:

�V(|φA〉) =
∑

B

V(UA,B|φA〉) − V(|φA〉) , (10)

in which A and B are donated for the class belonging in the Feature Space.

4.2 Stability condition

For any states in �, the Euclidean distance always satisfies ‖|φi 〉 − |φ∗
i 〉‖ ≥ 0, i.e.,

‖�|φ′〉‖ ≥ 0. An easy extension for the fidelity in Eq. (5) can also be derived. Under
the Lyapunov criterion, the recognitionMarkov Chain is always Transient, at least in a
small set, corresponding to a Cluster [11]. Then, the Ergodic Theorem for Countable-
state Chain is used to prove a recognition system stability [39].

Lemma 3 Ergodic Theorem: A Countable-state Chain with State Space � is Ergodic
if there exists a Lyapunov function V : � → R≥0 and a set S = ζ ∈ � : V(ζ ) ≤ r , in
which r < ∞ such that:

1. (Drift Condition) �V(ζ ) ≤ −1 + bIC (ζ ) for all ζ ∈ �.
2. (Small-set Condition) There exists m < ∞ such that for all ζ ∈ S and all ζ ′ ∈

S, Pm
ζ ζ ′ > 0.

The probability Pm
ζ ζ ′ means that the initial State ζ ends up with another State

ζ ′ after m steps. A simple Lyapunov function can be defined as V(|φ〉) = ‖|φ〉 −
|φ∗

A〉‖p,∀|φ〉 ∈ �A. The neighbor set �A is equivalent to a Cluster of |φ∗
A〉. The Drift

Condition guarantees a positive recurrence. The stability condition points to a bounded
drift operator, so that b < ∞. Therefore, the qubit who stores the intermediate feature
should be close enough to the ideal one. With respect to the disturbance compensation
in Eq. (8), the compensated quantum state, i.e., |φ̃i 〉 = Ue|φ̂i 〉, should guarantee the
following convergence condition:

max
|φ̂i 〉

‖(Ue − |φ∗〉〈φ̂i |)|φ̂i 〉‖ ≤ ε , |φ̂i 〉 ∈ �A. (11)

The approximated Ue should be close enough to the ideal unitary of |φ∗〉〈φ̂i | under a
limit ε. All normalized quantum states |φ̂i 〉 ∈ �A should satisfy this condition.

4.3 Training strategy

A loss optimization is used in this paper to approach the approximation ofUe. Firstly,
a decomposed 2 × 2 unitary matrix is constructed, i.e.,

ue = eiκ
[
e−i β

2 0

0 ei
β
2

] [
cos γ

2 − sin γ
2

sin γ
2 cos γ

2

] [
e−i δ

2 0

0 ei
δ
2

]

, (12)
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Table 1 Quantum representation of pattern recognition (Examples)

Sample Input |φin〉 Label |φout 〉
Qubits |φ3〉 |φ6〉 |φ9〉 |φ3φ6φ9〉
3 0.447|0〉 + 0.894|1〉 0.949|0〉 + 0.316|1〉 0.949|0〉 + 0.316|1〉 |100〉
6 0.995|0〉 + 0.100|1〉 0.316|0〉 + 0.948|1〉 0.954|0〉 + 0.300|1〉 |010〉
9 0.949|0〉 + 0.316|1〉 0.775|0〉 + 0.632|1〉 0.707|0〉 + 0.707|1〉 |001〉

in which κ , β, γ , and δ are real-valued. Then, the Feature Error ei in Eq. (7) is
substituted into κ , β, γ , and δ, e.g., κ ← κ · ei . Then, a diagonal expansion, Ue =
diag(ue, I), is used to match the intermediate dimension. The parameters κ , β, γ , and
δ can be trainable or not. In the former case, they can be optimized with the training
process of loss function in Eq. (5) referring to [6]. The trainable parameters are updated
as follows: Firstly, the open loop is trained independently, then the close one.

The training tuples are (|φin
n 〉, |φout

n 〉), n = 1, 2, · · · , N . With the feature
compensated, i.e., Ỹ out = UeŶ outU †

e , the gradient of loss function, i.e., L =
1/N

∑N
n=1〈φout

n |Ỹ out
n |φout

n 〉, is derived as follows:

∂L

∂e
= 1

N

N∑

n=1

〈φout
n |∂Ỹ

out
n

∂e
|φout

n 〉

= 1

N

N∑

n=1

〈

φout
n

∣
∣
∣
∣
∣

(
d Ue

de
Ŷ out
x U †

e +UeŶ
out
x

d U †
e

de

)∣
∣
∣
∣
∣
φout
n

〉 . (13)

The gradients for the parameters κ , β, γ , and δ all follow this form.

5 Experiments and analysis

5.1 Datasets and evaluationmetrics

The experimental devices for quantum computation are still far frombeing applied into
a large-scale dataset. Therefore, it is necessary to make a size scaling to test the system
performance. The widely used validation datasets, MNIST and Cifar-10, are used in
this paper. If all those objective N = 10 classes are used, the unitary matrix in the
intermediate feature extraction needs to be designed with a 210 size. Then, the whole
model needs an incredible RAM. As a result, a simplified test is taken. In Table 1, an
input Xin

3 belongs toClass 3with P3 = 0.8, P6 = 0.1, P9 = 0.1. In contrast, another
Xin
6 belongs to Class 6 with P6 = 0.9, P3 = 0.01, P9 = 0.09. The left one is Xin

9 ,
which belongs to Class 9 with P9 = 0.5, P3 = 0.1, P6 = 0.4. Bayes probability
estimation PA is prepared with a classical neural network for an input sample Xin

belongs toClass A. The three qubits are obtained by |φi 〉 = √
(1 − PA)|0〉+√

PA|1〉.
Then, the quantum label |φ3φ6φ9〉 are obtained.
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Table 2 Baseline performances
on MNIST

Model information Performance

Selected classes Average fidelity Success rate (%)

6 & 9 0.75 98.88

1 & 7 0.62 97.97

2 & 5 0.62 99.12

3 & 6 & 9 0.52 97.72

0 & 1 & 7 0.47 98.70

2 & 4& 8 0.41 95.72

The Bayes probability is estimated by a Multi-Layer Perceptron(MLP) trained by
the vanilla MNIST [14], or a Vision-Transformer(VIT) trained by the vanilla Cifar-
10 [27]. The disturbed MNIST in Sect. 5.4 is obtained by a Random Affine with the
degree range of (5◦, 45◦). Besides, the disturbed Cifar-10 is obtained by a compound
transformation of RandomRotation in (0◦, 30◦) and Random Perspective in distortion
scale of 0.6. The disturbed MNIST brings the preprocessed MLP obtain a success rate
of 70.33%, while the vanilla MNIST of 96.19%. Besides, a disturbed 76.52% and a
vanilla 98.98% for VIT on Cifar-10. Except the fidelity loss in Eq. (5), a classical
success rate can also be used as evaluation metrics for the recognition system.

5.2 Validation on quantum representation

Several simple tests on MNIST are taken to verify the quantum representation. The
baseline is designed referring to [6]. The depth of pattern recognition model is set
with the amount of objective classes, e.g., m = 2 in Eq. (1) for a recognition task for
6 and 9. The system performance is shown in Table 2. The success rate of recognition
system is basically equivalent to that of the classical one. But the average fidelity still
needs to be improved to approach an ideal 1, which is left as a future study. Then,
these several baselines are used in the following ablation and overall tests.

5.3 Ablation studies on soft label

The hard label (marked with H) and the soft label (marked with S) are tested in the
same baseline, respectively. The soft label is realized with the same quantum encoding
for Xin , but a P = 0.99 for the positive |1〉, and P = 0.01 for the negative. The soft
label brings a better performance in Table 3, especially for the average fidelity, so that
it is used as default.

5.4 Validation on feature compensation in quantum neural network

The system performances are compared between the baseline as well as the compen-
sated model, shown in Table 4. The vanilla datasets are marked with M for MNIST
andC for Cifar-10. Then, to validate the performance under disturbance, the disturbed
datasets, marked with M-d for MNIST and C-d for Cifar-10, are used to test again
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Table 3 Comparison between hard and soft label

Model information Performance

Selected classes Label style Average fidelity Success rate (%)

6 & 9 S 0.75 98.88

6 & 9 H 0.63 98.93

1 & 7 S 0.62 97.97

1 & 7 H 0.62 97.87

2 & 5 S 0.62 99.12

2 & 5 H 0.62 97.35

3 & 6 & 9 S 0.52 97.72

3 & 6 & 9 H 0.50 95.77

1 & 4 & 7 S 0.54 98.22

1 & 4 & 7 H 0.43 65.50

for the open loop and close loop recognition systems. The preprocessing mentioned
in Sect. 5.1 is used to obtain the datasets of M-d and C-d. The model marked with O
is used in the open loop system, and C for close.

Several representative improvements aremarked inbold.Thequantum-based recog-
nition system almost obtains an equivalent performance on the success rate compared
with the classical system. The success rates of the compensated system are obviously
boosted. Besides, most of the fidelity performances of the compensated system are
also improved, although they can not chase the excellent 1 in the linear datasets [6].
A future study should be taken for the nonlinear operations in quantum computation,
so that the recognition system can fulfill some more complicated recognition tasks. In
spite of this imperfect performance, these improvements validate the effectiveness of
the compensation on features.

5.5 Discussion on quantum resource cost

The previous validation tests show that those simple operations and a limited number
of additional qubits can bring an effective compensation on features. On one hand, the
resource cost to calculate those intermediate feature error in Eq. (7) isO(m) times the
one for a fidelity loss corresponding to the baseline, e.g., the vanilla Quantum Neural
Network in Beer et al. [6]. The linear complexityO(m) is related to the depth of feature
extraction as well as the accuracy requirement for a quantum-based computation. On
the other hand, the compensated recognition system reuses the open loop features as
well as the information extracted from the training dataset, e.g., the Cluster Centers.
The additional qubits are only used to calculate and store the compensated features.
As a result, the necessary amount of qubits in the compensation loop is O(Nm), in
whichN is the amount of objective classes in a recognition task of Eq. (6). Besides, the
compensation unitaryUe in Sect. 4.3 are constructedwith a series of simple operations,
e.g., the compound rotation in Eq. (12) and a diagonal expansion. With all these
additional quantum operations, the open loop recognition system is compensated.
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Table 4 Comparison on open and close loop system

Model information Performance comparison

Dataset Selected classes Model Average fidelity Success rate (%)

M 1 & 7 O 0.62 97.97

M 1 & 7 C 0.66 (+0.04) 98.61

M-d 1 & 7 O 0.55 83.77

M-d 1 & 7 C 0.58 (+0.03) 85.99 (+2.22)

M 2 & 5 O 0.62 99.12

M 2 & 5 C 0.62 99.01

M-d 2 & 5 O 0.55 85.19

M-d 2 & 5 C 0.56 85.14

M 3 & 6 & 9 O 0.52 97.72

M 3 & 6 & 9 C 0.52 97.95

M-d 3 & 6 & 9 O 0.45 79.95

M-d 3 & 6 & 9 C 0.45 80.79

M 0 & 1 & 7 O 0.47 98.70

M 0 & 1 & 7 C 0.42 98.89

M-d 0 & 1 & 7 O 0.42 87.69

M-d 0 & 1 & 7 C 0.39 90.84 (+3.15)

M 1 & 4 & 7 O 0.54 98.22

M 1 & 4 & 7 C 0.49 98.98

M-d 1 & 4 & 7 O 0.45 81.56

M-d 1 & 4 & 7 C 0.42 86.20 (+4.64)

C Automobile1 & Horse7 O 0.65 99.80

C Automobile1 & Horse7 C 0.68 (+0.03) 99.85

C-d Automobile1 & Horse7 O 0.60 83.25

C-d Automobile1 & Horse7 C 0.62 (+0.02) 84.20

C Cat3 & Dog5 O 0.68 97.95

C Cat3 & Dog5 C 0.68 97.90

C-d Cat3 & Dog5 O 0.58 77.30

C-d Cat3 & Dog5 C 0.59 77.45

C Deer4 & Horse7 O 0.64 99.80

C Deer4 & Horse7 C 0.66 (+0.02) 99.80

C-d Deer4 & Horse7 O 0.56 81.90

C-d Deer4 & Horse7 C 0.58 (+0.02) 82.70

C Deer4 & Frog6 & Horse7 O 0.44 99.67

C Deer4 & Frog6 & Horse7 C 0.45 99.77

C-d Deer4 & Frog6 & Horse7 O 0.39 80.20

C-d Deer4 & Frog6 & Horse7 C 0.39 80.80

C Airplane0 &Bird2 & Dog5 O 0.51 66.63

123



  409 Page 14 of 16 X. Hu et al.

Table 4 continued

Model information Performance comparison

Dataset Selected classes Model Average fidelity Success rate (%)

C Airplane0 &Bird2 & Dog5 C 0.50 99.10 (+32.47)

C-d Airplane0 &Bird2 & Dog5 O 0.46 62.13

C-d Airplane0 &Bird2 & Dog5 C 0.43 80.23 (+18.10)

In this paper, the preparation of quantum state as well as unitary is taken in
MATLAB, i.e., a classical simulation. Moreover, the training dataset (|φin〉, |φout〉)
is naturally assumed to be prepared with sufficient samples. The precise preparation
of a quantum state, especially for multi-qubits, as well as the objective compensation
unitary, is still an interesting topic in the quantum field [40]. However, no matter the
preparation is precise or not, a probability bias always exists in pattern recognition
field anyway, e.g., the noise effect in an image or a segment of voice [11, 18, 24].
These internal and external disturbances bring a quantum state, which store the useful
information, far from an ideal state, resulting at the disturbance rejection problem to be
solved in this paper. With the validation tests in the previous subsections, the proposed
compensation on features successfully solve the disturbance rejection problem in a
quantum-based pattern recognition system.

6 Conclusion

In this paper, the disturbance rejection principle on feature extraction is applied into
a quantum-based pattern recognition model. The unitary transformation in quantum
computation simplifies the operations in a pattern recognition task, so that the com-
pensation on features can be modeled in an interpretable form. The hierarchy feature
extraction process is modeled into a Markov Chain. Then, the system stability is
proved. The modeling of stability proof and the experiment results validate the effec-
tiveness of feature compensation in a quantum-based recognition system theoretically
and practically, although the system performances still need to be improved to chase
the excellent ones in classical artificial intelligence field.
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